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• High Performance Computing (HPC)
– TOP500

– Architectures of HPC Systems

– Message Passing Interface (MPI) Concepts

– Collective functions 

• Batch System
– The Batch System Flow
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– Access the JURECA Cluster

– Write and Submit a Batch Script 
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High Performance Computing 
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• Wikipedia: ‘redirects from HPC to Supercomputer’

– A supercomputer is a computer at the frontline of contemporary processing capacity with 
particularly high speed of calculation

• HPC includes work on ‘four basic building blocks’:

– Theory (numerical laws, physical models, speed-up performance, etc.)

– Technology (multi-core, supercomputers, networks, storages, etc.)

– Architecture (shared-memory, distributed-memory, interconnects, etc.)

– Software (libraries, schedulers, monitoring, applications, etc.)

What is High Performance Computing?

[1] Wikipedia ‘Supercomputer’ Online

[2] Introduction to High Performance Computing for Scientists and Engineers
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• High Performance Computing (HPC) is based on computing resources that enable the
efficient use of parallel computing techniques through specific support with dedicated hardware
such as high performance cpu/core interconnections

Understanding High Performance Computing

• High Throughput Computing (HTC) is based on commonly available computing resources such
as commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing
a high performance interconnection between the cpu/cores

HPC

network

interconnection

important

focus in this talk

HTC

network
interconnection

less important!
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• All modern supercomputers heavily depend on parallelism

• We speak of parallel computing whenever a number of ‘compute elements’ 
(e.g. cores) solve a problem in a cooperative way

• ‘The measure of speed in High Performance Computing matters

– Common measure for parallel computers established by TOP500 list

– Based on benchmark for ranking the best 500 computers worldwide

Parallel Computing

[2] Introduction to High Performance Computing for Scientists and Engineers

[3] TOP 500 supercomputing sites
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TOP 500 List (June 2018)

……..

• Based on the LINPACK benchmark

• LINPACK solves a dense system 

of linear equations of unspecified size.

It covers only a single architectural 

aspect (‘critics exist’) 

• Alternatives realistic applications,

benchmark suites and criteria exist

[7] The GREEN500

[5] HPC Challenge Benchmark Suite

[6] JUBE Benchmark Suite

[4] LINPACK Benchmark implementation
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• Two dominant types of architectures

– Shared-Memory Computers

– Distributed-Memory Computers

• Often hierarchical (hybrid) systems of both in practice

• More recently both above are considered as ‘programming models’

– Shared-Memory parallelization with OpenMP

– Distributed-Memory parallel programming with MPI

Architectures of HPC Systems 
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• System where a number of CPUs work on a common, shared physical address space

• Programming using OpenMP (set of compiler directives to ‘mark parallel regions’)

• Enables immediate access to all data by all processors without explicit communication

Shared-Memory Computers 

[8] OpenMP API Specification

[2] Introduction to High Performance Computing 
for Scientists and Engineers
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• Establishes a ‘system view’ where no process can access another process’ memory directly

Distributed-Memory Computers 

[2] Introduction to High Performance Computing 
for Scientists and Engineers

• Processors communicate via Network Interfaces (NI)

• NI mediates the connection to a Communication network

• This setup is rarely used -> a programming model view today

Programming

Model:

Message

Passing

x x
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• Enables explicit message passing as communication between processors

• No remote memory access on distributed-memory systems

• Require to ‘send messages’ back and forth between processes PX

• Programming is tedious & complicated, but most flexible method

Programming with Distributed Memory using MPI

[9] MPI Standard
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• Mixture of shared-memory and distributed-memory systems 

• Nowadays large-scale ‘hybrid’ parallel computers have shared-memory building blocks 
interconnected with a fast network (e.g., InfiniBand)

Hierarchical Hybrid Computers
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• ‘Communication library’ abstracting from low-level network view

– Offers 500+ available functions to communicate between computing nodes

– Practice reveals: parallel applications often require just ~12 (!) functions

– Includes routines for efficient ‘parallel I/O’ (using underlying hardware)

• Supports ‘different ways of communication’

– ‘Point-to-point communication’ between two computing nodes (P P)

– Collective functions involve ‘N computing nodes in useful communication’

• Deployment on Supercomputers

– Installed on (almost) all parallel computers

– Different languages: C, Fortran, Python, R, etc.

– Careful: different versions exist

What is Message Passing Interface (MPI)?

Recall ‘computing

nodes’ are independent

computing processors

(that may also have N

cores each) and that are

all part of one big

parallel computer



Parallel Programming (MPI) and Batch Usage (SLURM) 14

• Simplify programming in parallel programming, focus on applications

• It is not designed to handle any communication in computer networks

• Designed for performance within large parallel computers (e.g. no security)

• Several open-source well-tested implementations of MPI

• It enables portability of parallel applications 

Key Keatures of MPI
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• Each processor has its own data and memory that cannot be accessed by other processors

Message Passing: Exchanging Data
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• Broadcast distributes the same data to many or even all other processors

Collective Functions: Broadcast (one-to-many)
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• Scatter distributes different data to many or even all other processors

Collective Functions: Scatter (one-to-many)
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• Gather collects data from many or even all other processors to one specific processor

Collective Functions: Gather (many-to-one)
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• Each Reduce combines collection with computation based on data from many or even all 
other processors

• Usage of reduce includes finding a global minimum or maximum, sum, or product of 
the different data located at different processors

Collective Functions: Reduce (many-to-one)

+ global sum as example
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Batch System
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• Mechanism to control access by many users to shared computing resources

• Queuing / scheduling system for the jobs  of the users

• Manages the reservation of resources and job execution

• Allows users to “fire and forget”, long calculations or many jobs (“production runs”)

What is a Batch System?
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• Opposite of interactive processing 

• Ensure all users get a fair share of compute resources (demand usually exceeds supply)

• To ensure the machine is utilized as efficiently as possible

• To track usage - for accounting and budget control

• To mediate access to other resources e.g. software licences

The only access to significant resources on the HPC machines is through 
the batch process

Why do we need a Batch System?
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1. Setup a job, consisting of:

– Commands that run one or more calculations / simulations

– Specification of compute resources needed to do this

2. Submit your job to the batch system

– Job is placed in a queue by the scheduler

– Will be executed when there is space and time on the machine

– Job runs until it finishes successfully, is terminated due to errors, or exceeds a time limit

3. Examine outputs and any error messages

How to use a Batch System
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Batch System Flow

[11] Batch Systems 
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• Slurm is the chosen Batch System (Workload Manager) for JURECA

– Scheduling according to priorities: jobs with the highest priorities will be scheduled next

– Backfilling scheduling algorithm: the scheduler checks the queue and may schedule jobs with lower priorities that can fit in the gap created 
by freeing resources for the next highest priority jobs

– No node-sharing: the smallest allocation for jobs is one compute node. Running jobs do not disturb each other.

– Accounted CPU-Quotas/job = Number-of-nodes x Walltime (x cores/node)

JSC Batch Model

Node

Core
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Practicals
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JURECA HPC System at JSC

• Characteristics

– Login nodes with 256 GB memory per node

– 45,216 CPU cores

– 1.8 (CPU) + 0.44 (GPU)  Petaflop/s peak performance

– Two Intel Xeon E5-2680 v3 Haswell

CPUs per node: 2 x 12 cores, 2.5 GhZ

– 75 compute nodes equipped with two 

NVIDIA K80 GPUs (2 x 4992 CUDA cores)

• Architecture & Network

– Based on T-Platforms V-class server architecture

– Mellanox EDR InfiniBand high-speed

network with non-blocking fat tree topology

– 100 GiB per second storage connection to JUST

[10] JURECA HPC System

HPC
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Access JURECA Cluster (Step 1)

??

• Open your web browser

• Connect to https://goo.gl/NM6gZk

• Click on the orange button “Sign in to Jupyter@JSC”

??????????
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Access JURECA Cluster (Step 2)

??

• Select authentication option: “Password” (Log in your train Account)

• Insert Username and SSH Passphrase

• Authenticate

??????????
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Access JURECA Cluster (Step 3)

• Click on

• Click on
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Access JURECA Cluster (Step 4)

• Click on
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JURECA Cluster Accessed 
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Navigate to the Material

• ls command: it shows the files and directories that are present in your current location

• The material of the tutorial is inside the igarss_tutorial folder

• cd command: use to access a folder (do $ cd igarss_tutorial)

• The material of this first lecture is in the mpi_hello_world folder (do $ cd mpi_hello_world)
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Start ‘Thinking’ Parallel 

• Parallel MPI programs know about the existence of other processes of it and what their 
own role is in the bigger picture

• MPI programs are written in a sequential programming language, but executed in parallel

– Same MPI program runs on all processes (Single Program Multiple Data)

• Data exchange is key for design of applications

– Sending/receiving data at specific times in the program

– No shared memory for sharing variables with other remote processes

– Messages can be simple variables (e.g. a word) or complex structures

• Start with the basic building blocks using MPI

– Building up the ‘parallel computing environment’
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(MPI) Basic Building Blocks: A main() function
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(MPI) Basic Building Blocks: Variables & Output
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MPI Basic Building Blocks: Header & Init/Finalize
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MPI Basic Building Blocks: Rank & Size Variables
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Job Script 

• Text file containing

– Job setup information for the batch system 

– Commands to be executed

name_script.sh

[11] Batch Systems 
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Job Script - File Creation with vi

• vi (visual editor): is the default editor that comes with the UNIX operating system 
• It has two modes of operation:

• Command mode commands: cause action to be taken on the file
• Insert mode: entered text is inserted into the file

• Do the following steps:

• $ vi submit_hello_world.sh

• Press i on your keyboard
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Job Scrip Editing (1)

• Start the script with the shebang (i.e., absolute path to the bash interpreter)

• Type as a first line of your script: #!/bin/bash –x  (execute the file using the bash shell)
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Job Scrip Editing (2)

• #SBATCH--job-name=hello_world

• Set the name of the job

• #SBATCH--output=hello_world_out.%j

• Path to the job's standard output

• #SBATCH--error=hello_world_err.%j

• Path to the job's standard error

• #SBATCH--mail-user=your_email

• Define the mail address for notifications

• #SBATCH--mail-type=ALL

• When to send mail notifications 
Options: BEGIN,END,FAIL,ALL
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Job Scrip Editing (3)

• #SBATCH--partition=batch

• Partition to be used from the job

• #SBATCH--nodes=1

• Number of compute nodes used by the job

• #SBATCH--ntasks=24

• Number of tasks (MPI processes)

• #SBATCH--time=00:05:00 

• Maximum wall-clock time of the job

• #SBATCH--reservation=igarss-cpu

• Use nodes reserved for this tutorial

(ReservationName=igarss-cpu StartTime=2018-07-22T10:45:00 EndTime=2018-07-22T18:15:00) 
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Job Scrip Editing (4)

• module load Intel ParaStationMPI

• Get access to a specific set of software 
and its dependencies

• mpirun ./hello_world

• Execute the MPI program 
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Save and Close the Job Script 

• Press in this exact order the following 

keys of your keyboard:

• ESC

• :

• w 

• q

• !

• ENTER
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Submit the Job Script 

• $ sbatch submit_hello_world.sh
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Check the Results

• If the job was successfully run, you will get 2 files
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hello_world_err
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hello_world_out
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Additional Material
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JURECA Partitions

[10] JURECA HPC System
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System Usage – Modules 

• The installed software of the clusters is organized through a hierarchy of modules.

• Loading a module adapts your environment variables to give you access to a specific set of
software and its dependencies.

• Preparing the module environment includes different steps:

1. [Optional] Choose SW architecture: Architecture/Haswell (default) or Architecture/KNL
2. Load a compiler
3. [Optional] Load an MPI runtime.
4. Load other modules, that where built with currently loaded modules (compiler, MPI, other libraries)

• Useful commands: 

[10] JURECA HPC System
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Slurm – User Commands (1)

• salloc to request interactive jobs/allocations

• sattach to attach standard input, output, and error plus signal capabilities to a currently running job or job step

• sbatch to submit a batch script (which can be a bash, Perl or Python script)

• scancel to cancel a pending or running job or job step

• sbcast to transfer a file to all nodes allocated for a job

• sgather to transfer a file from all allocated nodes to the currently active job.This command can be used only 
inside a job script

• scontrol provides also some functionality for the users to manage jobs or query and get some information 
about the system configuration

• sinfo to retrieve information about the partitions, reservations and node states

• smap graphically shows the state of the partitions and nodes using a curses interface. We recommend llview
as an alternative which is supported on all JSC machines

[12] SLURM Workload Manager



Parallel Programming (MPI) and Batch Usage (SLURM) 54

Slurm – User Commands (2)
• sprio can be used to query job priorities

• squeue to query the list of pending and running jobs

• srun to initiate job-steps mainly within a job or start an interactive jobs. A job can contain multiple job steps 
executing sequentially or in parallel on independent or shared nodes within the job's node allocation

• sshare to retrieve fair-share information for each user

• sstat to query status information about a running job

• sview is a graphical user interface to get state information for jobs, partitions, and nodes

• sacct to retrieve accounting information about jobs and job steps in Slurm’s database

• sacctmgr allows also the users to query some information about their accounts and other accounting 

information in Slurm's database.

* For more detailed info please check the online documentation and the man pages
[12] SLURM Workload Manager



Parallel Programming (MPI) and Batch Usage (SLURM) 55

Slurm – Job Submission 

• There are 2 commands for job allocation: sbatch is used for batch jobs and salloc is used to allocate 
resource for interactive jobs. The format of these commands:

• sbatch [options] jobscript [args...]

• salloc [options] [<command> [command args]] 

• List of the most important submission/allocation options:

[12] SLURM Workload Manager
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