
Parallel Programming (MPI) 
and Batch Usage (SLURM)
Dr. Gabriele Cavallaro

Postdoctoral Researcher

High Productivity Data Processing Group

Jülich Supercomputing Centre 



Parallel Programming (MPI) and Batch Usage (SLURM) 2

• High Performance Computing (HPC)
– TOP500

– Architectures of HPC Systems

– Message Passing Interface (MPI) Concepts

– Collective functions 

• Batch System
– The Batch System Flow

• Practicals
– Access the JURECA Cluster

– Write and Submit a Batch Script 

Outline



Parallel Programming (MPI) and Batch Usage (SLURM) 3

High Performance Computing 



Parallel Programming (MPI) and Batch Usage (SLURM) 4

• Wikipedia: ‘redirects from HPC to Supercomputer’

– A supercomputer is a computer at the frontline of contemporary processing capacity with 
particularly high speed of calculation

• HPC includes work on ‘four basic building blocks’:

– Theory (numerical laws, physical models, speed-up performance, etc.)

– Technology (multi-core, supercomputers, networks, storages, etc.)

– Architecture (shared-memory, distributed-memory, interconnects, etc.)

– Software (libraries, schedulers, monitoring, applications, etc.)

What is High Performance Computing?

[1] Wikipedia ‘Supercomputer’ Online

[2] Introduction to High Performance Computing for Scientists and Engineers



Parallel Programming (MPI) and Batch Usage (SLURM) 5

• High Performance Computing (HPC) is based on computing resources that enable the
efficient use of parallel computing techniques through specific support with dedicated hardware
such as high performance cpu/core interconnections

Understanding High Performance Computing

• High Throughput Computing (HTC) is based on commonly available computing resources such
as commodity PCs and small clusters that enable the execution of ‘farming jobs’ without providing
a high performance interconnection between the cpu/cores

HPC

network

interconnection

important

focus in this talk

HTC

network
interconnection

less important!



Parallel Programming (MPI) and Batch Usage (SLURM) 6

• All modern supercomputers heavily depend on parallelism

• We speak of parallel computing whenever a number of ‘compute elements’ 
(e.g. cores) solve a problem in a cooperative way

• ‘The measure of speed in High Performance Computing matters

– Common measure for parallel computers established by TOP500 list

– Based on benchmark for ranking the best 500 computers worldwide

Parallel Computing

[2] Introduction to High Performance Computing for Scientists and Engineers

[3] TOP 500 supercomputing sites



Parallel Programming (MPI) and Batch Usage (SLURM) 7

TOP 500 List (June 2018)

……..

• Based on the LINPACK benchmark

• LINPACK solves a dense system 

of linear equations of unspecified size.

It covers only a single architectural 

aspect (‘critics exist’) 

• Alternatives realistic applications,

benchmark suites and criteria exist

[7] The GREEN500

[5] HPC Challenge Benchmark Suite

[6] JUBE Benchmark Suite

[4] LINPACK Benchmark implementation



Parallel Programming (MPI) and Batch Usage (SLURM) 8

• Two dominant types of architectures

– Shared-Memory Computers

– Distributed-Memory Computers

• Often hierarchical (hybrid) systems of both in practice

• More recently both above are considered as ‘programming models’

– Shared-Memory parallelization with OpenMP

– Distributed-Memory parallel programming with MPI

Architectures of HPC Systems 



Parallel Programming (MPI) and Batch Usage (SLURM) 9

• System where a number of CPUs work on a common, shared physical address space

• Programming using OpenMP (set of compiler directives to ‘mark parallel regions’)

• Enables immediate access to all data by all processors without explicit communication

Shared-Memory Computers 

[8] OpenMP API Specification

[2] Introduction to High Performance Computing 
for Scientists and Engineers



Parallel Programming (MPI) and Batch Usage (SLURM) 10

• Establishes a ‘system view’ where no process can access another process’ memory directly

Distributed-Memory Computers 

[2] Introduction to High Performance Computing 
for Scientists and Engineers

• Processors communicate via Network Interfaces (NI)

• NI mediates the connection to a Communication network

• This setup is rarely used -> a programming model view today

Programming

Model:

Message

Passing

x x



Parallel Programming (MPI) and Batch Usage (SLURM) 11

• Enables explicit message passing as communication between processors

• No remote memory access on distributed-memory systems

• Require to ‘send messages’ back and forth between processes PX

• Programming is tedious & complicated, but most flexible method

Programming with Distributed Memory using MPI

[9] MPI Standard



Parallel Programming (MPI) and Batch Usage (SLURM) 12

• Mixture of shared-memory and distributed-memory systems 

• Nowadays large-scale ‘hybrid’ parallel computers have shared-memory building blocks 
interconnected with a fast network (e.g., InfiniBand)

Hierarchical Hybrid Computers



Parallel Programming (MPI) and Batch Usage (SLURM) 13

• ‘Communication library’ abstracting from low-level network view

– Offers 500+ available functions to communicate between computing nodes

– Practice reveals: parallel applications often require just ~12 (!) functions

– Includes routines for efficient ‘parallel I/O’ (using underlying hardware)

• Supports ‘different ways of communication’

– ‘Point-to-point communication’ between two computing nodes (P P)

– Collective functions involve ‘N computing nodes in useful communication’

• Deployment on Supercomputers

– Installed on (almost) all parallel computers

– Different languages: C, Fortran, Python, R, etc.

– Careful: different versions exist

What is Message Passing Interface (MPI)?

Recall ‘computing

nodes’ are independent

computing processors

(that may also have N

cores each) and that are

all part of one big

parallel computer



Parallel Programming (MPI) and Batch Usage (SLURM) 14

• Simplify programming in parallel programming, focus on applications

• It is not designed to handle any communication in computer networks

• Designed for performance within large parallel computers (e.g. no security)

• Several open-source well-tested implementations of MPI

• It enables portability of parallel applications 

Key Keatures of MPI



Parallel Programming (MPI) and Batch Usage (SLURM) 15

• Each processor has its own data and memory that cannot be accessed by other processors

Message Passing: Exchanging Data



Parallel Programming (MPI) and Batch Usage (SLURM) 16

• Broadcast distributes the same data to many or even all other processors

Collective Functions: Broadcast (one-to-many)



Parallel Programming (MPI) and Batch Usage (SLURM) 17

• Scatter distributes different data to many or even all other processors

Collective Functions: Scatter (one-to-many)



Parallel Programming (MPI) and Batch Usage (SLURM) 18

• Gather collects data from many or even all other processors to one specific processor

Collective Functions: Gather (many-to-one)



Parallel Programming (MPI) and Batch Usage (SLURM) 19

• Each Reduce combines collection with computation based on data from many or even all 
other processors

• Usage of reduce includes finding a global minimum or maximum, sum, or product of 
the different data located at different processors

Collective Functions: Reduce (many-to-one)

+ global sum as example



Parallel Programming (MPI) and Batch Usage (SLURM) 20

Batch System



Parallel Programming (MPI) and Batch Usage (SLURM) 21

• Mechanism to control access by many users to shared computing resources

• Queuing / scheduling system for the jobs  of the users

• Manages the reservation of resources and job execution

• Allows users to “fire and forget”, long calculations or many jobs (“production runs”)

What is a Batch System?



Parallel Programming (MPI) and Batch Usage (SLURM) 22

• Opposite of interactive processing 

• Ensure all users get a fair share of compute resources (demand usually exceeds supply)

• To ensure the machine is utilized as efficiently as possible

• To track usage - for accounting and budget control

• To mediate access to other resources e.g. software licences

The only access to significant resources on the HPC machines is through 
the batch process

Why do we need a Batch System?



Parallel Programming (MPI) and Batch Usage (SLURM) 23

1. Setup a job, consisting of:

– Commands that run one or more calculations / simulations

– Specification of compute resources needed to do this

2. Submit your job to the batch system

– Job is placed in a queue by the scheduler

– Will be executed when there is space and time on the machine

– Job runs until it finishes successfully, is terminated due to errors, or exceeds a time limit

3. Examine outputs and any error messages

How to use a Batch System



Parallel Programming (MPI) and Batch Usage (SLURM) 24

Batch System Flow

[11] Batch Systems 



Parallel Programming (MPI) and Batch Usage (SLURM) 25

• Slurm is the chosen Batch System (Workload Manager) for JURECA

– Scheduling according to priorities: jobs with the highest priorities will be scheduled next

– Backfilling scheduling algorithm: the scheduler checks the queue and may schedule jobs with lower priorities that can fit in the gap created 
by freeing resources for the next highest priority jobs

– No node-sharing: the smallest allocation for jobs is one compute node. Running jobs do not disturb each other.

– Accounted CPU-Quotas/job = Number-of-nodes x Walltime (x cores/node)

JSC Batch Model

Node

Core



Parallel Programming (MPI) and Batch Usage (SLURM) 26

Practicals



Parallel Programming (MPI) and Batch Usage (SLURM) 27

JURECA HPC System at JSC

• Characteristics

– Login nodes with 256 GB memory per node

– 45,216 CPU cores

– 1.8 (CPU) + 0.44 (GPU)  Petaflop/s peak performance

– Two Intel Xeon E5-2680 v3 Haswell

CPUs per node: 2 x 12 cores, 2.5 GhZ

– 75 compute nodes equipped with two 

NVIDIA K80 GPUs (2 x 4992 CUDA cores)

• Architecture & Network

– Based on T-Platforms V-class server architecture

– Mellanox EDR InfiniBand high-speed

network with non-blocking fat tree topology

– 100 GiB per second storage connection to JUST

[10] JURECA HPC System

HPC



Parallel Programming (MPI) and Batch Usage (SLURM) 28

Access JURECA Cluster (Step 1)

??

• Open your web browser

• Connect to https://goo.gl/NM6gZk

• Click on the orange button “Sign in to Jupyter@JSC”

??????????



Parallel Programming (MPI) and Batch Usage (SLURM) 29

Access JURECA Cluster (Step 2)

??

• Select authentication option: “Password” (Log in your train Account)

• Insert Username and SSH Passphrase

• Authenticate

??????????



Parallel Programming (MPI) and Batch Usage (SLURM) 30

Access JURECA Cluster (Step 3)

• Click on

• Click on



Parallel Programming (MPI) and Batch Usage (SLURM) 31

Access JURECA Cluster (Step 4)

• Click on



Parallel Programming (MPI) and Batch Usage (SLURM) 32

JURECA Cluster Accessed 



Parallel Programming (MPI) and Batch Usage (SLURM) 33

Navigate to the Material

• ls command: it shows the files and directories that are present in your current location

• The material of the tutorial is inside the igarss_tutorial folder

• cd command: use to access a folder (do $ cd igarss_tutorial)

• The material of this first lecture is in the mpi_hello_world folder (do $ cd mpi_hello_world)



Parallel Programming (MPI) and Batch Usage (SLURM) 34

Start ‘Thinking’ Parallel 

• Parallel MPI programs know about the existence of other processes of it and what their 
own role is in the bigger picture

• MPI programs are written in a sequential programming language, but executed in parallel

– Same MPI program runs on all processes (Single Program Multiple Data)

• Data exchange is key for design of applications

– Sending/receiving data at specific times in the program

– No shared memory for sharing variables with other remote processes

– Messages can be simple variables (e.g. a word) or complex structures

• Start with the basic building blocks using MPI

– Building up the ‘parallel computing environment’



Parallel Programming (MPI) and Batch Usage (SLURM) 35

(MPI) Basic Building Blocks: A main() function



Parallel Programming (MPI) and Batch Usage (SLURM) 36

(MPI) Basic Building Blocks: Variables & Output



Parallel Programming (MPI) and Batch Usage (SLURM) 37

MPI Basic Building Blocks: Header & Init/Finalize



Parallel Programming (MPI) and Batch Usage (SLURM) 38

MPI Basic Building Blocks: Rank & Size Variables



Parallel Programming (MPI) and Batch Usage (SLURM) 39

Job Script 

• Text file containing

– Job setup information for the batch system 

– Commands to be executed

name_script.sh

[11] Batch Systems 



Parallel Programming (MPI) and Batch Usage (SLURM) 40

Job Script - File Creation with vi

• vi (visual editor): is the default editor that comes with the UNIX operating system 
• It has two modes of operation:

• Command mode commands: cause action to be taken on the file
• Insert mode: entered text is inserted into the file

• Do the following steps:

• $ vi submit_hello_world.sh

• Press i on your keyboard



Parallel Programming (MPI) and Batch Usage (SLURM) 41

Job Scrip Editing (1)

• Start the script with the shebang (i.e., absolute path to the bash interpreter)

• Type as a first line of your script: #!/bin/bash –x  (execute the file using the bash shell)



Parallel Programming (MPI) and Batch Usage (SLURM) 42

Job Scrip Editing (2)

• #SBATCH--job-name=hello_world

• Set the name of the job

• #SBATCH--output=hello_world_out.%j

• Path to the job's standard output

• #SBATCH--error=hello_world_err.%j

• Path to the job's standard error

• #SBATCH--mail-user=your_email

• Define the mail address for notifications

• #SBATCH--mail-type=ALL

• When to send mail notifications 
Options: BEGIN,END,FAIL,ALL



Parallel Programming (MPI) and Batch Usage (SLURM) 43

Job Scrip Editing (3)

• #SBATCH--partition=batch

• Partition to be used from the job

• #SBATCH--nodes=1

• Number of compute nodes used by the job

• #SBATCH--ntasks=24

• Number of tasks (MPI processes)

• #SBATCH--time=00:05:00 

• Maximum wall-clock time of the job

• #SBATCH--reservation=igarss-cpu

• Use nodes reserved for this tutorial

(ReservationName=igarss-cpu StartTime=2018-07-22T10:45:00 EndTime=2018-07-22T18:15:00) 



Parallel Programming (MPI) and Batch Usage (SLURM) 44

Job Scrip Editing (4)

• module load Intel ParaStationMPI

• Get access to a specific set of software 
and its dependencies

• mpirun ./hello_world

• Execute the MPI program 



Parallel Programming (MPI) and Batch Usage (SLURM) 45

Save and Close the Job Script 

• Press in this exact order the following 

keys of your keyboard:

• ESC

• :

• w 

• q

• !

• ENTER



Parallel Programming (MPI) and Batch Usage (SLURM) 46

Submit the Job Script 

• $ sbatch submit_hello_world.sh



Parallel Programming (MPI) and Batch Usage (SLURM) 47

Check the Results

• If the job was successfully run, you will get 2 files



Parallel Programming (MPI) and Batch Usage (SLURM) 48

hello_world_err



Parallel Programming (MPI) and Batch Usage (SLURM) 49

hello_world_out



Parallel Programming (MPI) and Batch Usage (SLURM) 50

Additional Material



Parallel Programming (MPI) and Batch Usage (SLURM) 51

JURECA Partitions

[10] JURECA HPC System



Parallel Programming (MPI) and Batch Usage (SLURM) 52

System Usage – Modules 

• The installed software of the clusters is organized through a hierarchy of modules.

• Loading a module adapts your environment variables to give you access to a specific set of
software and its dependencies.

• Preparing the module environment includes different steps:

1. [Optional] Choose SW architecture: Architecture/Haswell (default) or Architecture/KNL
2. Load a compiler
3. [Optional] Load an MPI runtime.
4. Load other modules, that where built with currently loaded modules (compiler, MPI, other libraries)

• Useful commands: 

[10] JURECA HPC System



Parallel Programming (MPI) and Batch Usage (SLURM) 53

Slurm – User Commands (1)

• salloc to request interactive jobs/allocations

• sattach to attach standard input, output, and error plus signal capabilities to a currently running job or job step

• sbatch to submit a batch script (which can be a bash, Perl or Python script)

• scancel to cancel a pending or running job or job step

• sbcast to transfer a file to all nodes allocated for a job

• sgather to transfer a file from all allocated nodes to the currently active job.This command can be used only 
inside a job script

• scontrol provides also some functionality for the users to manage jobs or query and get some information 
about the system configuration

• sinfo to retrieve information about the partitions, reservations and node states

• smap graphically shows the state of the partitions and nodes using a curses interface. We recommend llview
as an alternative which is supported on all JSC machines

[12] SLURM Workload Manager



Parallel Programming (MPI) and Batch Usage (SLURM) 54

Slurm – User Commands (2)
• sprio can be used to query job priorities

• squeue to query the list of pending and running jobs

• srun to initiate job-steps mainly within a job or start an interactive jobs. A job can contain multiple job steps 
executing sequentially or in parallel on independent or shared nodes within the job's node allocation

• sshare to retrieve fair-share information for each user

• sstat to query status information about a running job

• sview is a graphical user interface to get state information for jobs, partitions, and nodes

• sacct to retrieve accounting information about jobs and job steps in Slurm’s database

• sacctmgr allows also the users to query some information about their accounts and other accounting 

information in Slurm's database.

* For more detailed info please check the online documentation and the man pages
[12] SLURM Workload Manager



Parallel Programming (MPI) and Batch Usage (SLURM) 55

Slurm – Job Submission 

• There are 2 commands for job allocation: sbatch is used for batch jobs and salloc is used to allocate 
resource for interactive jobs. The format of these commands:

• sbatch [options] jobscript [args...]

• salloc [options] [<command> [command args]] 

• List of the most important submission/allocation options:

[12] SLURM Workload Manager



Parallel Programming (MPI) and Batch Usage (SLURM) 56

Bibliography 

• [1] Wikipedia ‘Supercomputer’, Online: http://en.wikipedia.org/wiki/Supercomputer

• [2] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein, Chapman & Hall/CRC

Computational Science, ISBN 143981192X

• [3] TOP500 Supercomputing Sites, Online: http://www.top500.org/

• [4] LINPACK Benchmark, Online: http://www.netlib.org/benchmark/hpl/

• [5] HPC Challenge Benchmark Suite, Online: http://icl.cs.utk.edu/hpcc/

• [6] JUBE Benchmark Suite, Online:

Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html

• [7] The GREEN500, Online: https://www.top500.org/green500/

• [8] The OpenMP API specification for parallel programming, Online:http://openmp.org/wp/openmp-specifications/

• [9] The MPI Standard, Online: http://www.mpi-forum.org/docs/

• [10] JURECA HPC System at JSC

Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

• [11] Batch Systems – archer Running your jobs on an HPC machine

Online: https://www.archer.ac.uk/training/course-material/2017/07/intro-epcc/slides/L10_Batch_Execution.pdf

• [12] SLURM Workload Manager, Online, https://slurm.schedmd.com/



The DEEP projects have received funding from the European Union’s Seventh Framework 
Programme (FP7) for research, technological development and demonstration and the 
Horion2020 (H2020) funding framework under grant agreement no. FP7-ICT-287530 
(DEEP), FP7-ICT-610476 (DEEP-ER) and H2020-FETHPC-754304 (DEEP-EST).


